Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566236

RESUMO

High-temperature stress (HS) is a major abiotic stress that affects the yield and quality of plants. Cathepsin B-like protease 2 (CathB2) has been reported to play a role in developmental processes and stress response, but its involvement in HS response has not been identified. Here, overexpression, virus-induced gene silencing (VIGS)and RNA-sequencing analysis were performed to uncover the functional characteristics of SlCathB2-1 and SlCathB2-2 genes for HS response in tomato. The results showed that overexpression of SlCathB2-1 and SlCathB2-2 resulted in reduced heat tolerance of tomato to HS while silencing the genes resulted in enhanced heat tolerance. RNA-sequencing analysis revealed that the heat shock proteins (HSPs) exhibited higher expression in WT than in SlCathB2-1 and SlCathB2-2 overexpression lines. Furthermore, the possible molecular regulation mechanism underlying SlCathB2-1 and SlCathB2-2-mediated response to HS was investigated. We found that SlCathB2-1 and SlCathB2-2 negatively regulated antioxidant capacity by regulating a set of genes involved in antioxidant defence and reactive oxygen species (ROS) signal transduction. We also demonstrated that SlCathB2-1 and SlCathB2-2 positively regulated ER-stress-induced PCD (ERSID) by regulating unfolded protein response (UPR) gene expression. Furthermore, SlCathB2-1 and SlCathB2-2 interacting with proteasome subunit beta type-4 (PBA4) was identified in the ERSID pathway using yeast two-hybrid (Y2H) analysis and bimolecular fluorescence complementation (BiFC) screening. Overall, the study identified both SlCathB2-1 and SlCathB2-2 as new negative regulators to HS and presented a new HS response pathway. This provided the foundation for the construction of heat-tolerant molecular mechanisms and breeding strategies aiming to improve the thermotolerance of tomato plants.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Antioxidantes/metabolismo , Temperatura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA , Resposta ao Choque Térmico/genética , Regulação da Expressão Gênica de Plantas
2.
Plant Physiol Biochem ; 206: 108317, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171135

RESUMO

Cold stress (CS) significantly limits cucumber yield. However, it remains unclear whether and how sodium nitrophenolate (CSN) regulates plant responses to cold stress. Here, H2O, CSN, 24-epibrassinolide (EBR), and CSN + EBR were sprayed on cucumber seedlings before or after CS, and on control plants. We found that CSN, EBR, or EBR + CSN pre-treatment improved seedling growth under normal conditions (control condition) and cold tolerance under CS conditions. EBR pre-treatment promoted the expression of approximately half of the genes involved in BR synthesis and signaling and CsICE-CsCBF-CsCOR under CS. However, CSN pre-treatment promoted almost all the expression of BR synthesis and signaling genes, and CsICE-CsCBF-CsCOR genes, which showed the highest expression in early CS, remarkably improving the cold tolerance of cucumber. Interestingly, EBR and CSN had a superimposed effect on the expression of BR synthesis and signaling and CsICE-CsCBF-CsCOR genes, which rapidly increased their expression under normal temperature. Spraying EBR after CS accelerated seedling recovery, whereas CSN had the opposite effect. However, spraying CSN combined with EBR accelerated the recovery of CS-injured seedlings and was better than spraying EBR alone. Although CS-injured seedlings were negatively influenced by CSN, pre-treatment with CSN accelerated seedling growth and increased cold tolerance, suggesting that the effect of CSN was related to whether the seedlings were damaged by CS. In conclusion, we firstly found that CSN enhanced cold tolerance by activating BR signaling, contributing to the gene expression of ICE-CBF-COR and that CSN + EBR contributed to cold tolerance and CS-injured seedling recovery in cucumber.


Assuntos
Cucumis sativus , Esteroides Heterocíclicos , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Plântula/metabolismo , Cucumis sativus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sódio/metabolismo , Esteroides Heterocíclicos/farmacologia
3.
BMC Plant Biol ; 23(1): 566, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968586

RESUMO

Cold stress affects the growth and development of cucumbers. Whether the BPC2 transcription factor participates in cold tolerance and its regulatory mechanism in plants have not been reported. Here, we used wild-type (WT) cucumber seedlings and two mutant Csbpc2 lines as materials. The underlying mechanisms were studied by determining the phenotype, physiological and biochemical indicators, and transcriptome after cold stress. The results showed that CsBPC2 knockout reduced cucumber cold tolerance by increasing the chilling injury index, relative electrical conductivity and malondialdehyde (MDA) content and decreasing antioxidant enzyme activity. We then conducted RNA sequencing (RNA-seq) to explore transcript-level changes in Csbpc2 mutants. A large number of differentially expressed genes (1032) were identified and found to be unique in Csbpc2 mutants. However, only 489 down-regulated genes related to the synthesis and transport of amino acids and vitamins were found to be enriched through GO analysis. Moreover, both RNA-seq and qPT-PCR techniques revealed that CsBPC2 knockout also decreased the expression of some key cold-responsive genes, such as CsICE1, CsCOR413IM2, CsBZR1 and CsBZR2. These results strongly suggested that CsBPC2 knockout not only affected cold function genes but also decreased the levels of some key metabolites under cold stress. In conclusion, this study reveals for the first time that CsBPC2 is essential for cold tolerance in cucumber and provides a reference for research on the biological function of BPC2 in other plants.


Assuntos
Resposta ao Choque Frio , Cucumis sativus , Resposta ao Choque Frio/genética , Transcriptoma , Fatores de Transcrição/genética , Plântula/genética , Antioxidantes/metabolismo , Temperatura Baixa , Regulação da Expressão Gênica de Plantas
4.
Physiol Plant ; 175(4): e13977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616013

RESUMO

BASIC PENTACYSTEINE (BPCs) transcription factors are important regulators of plant growth and development. However, the regulatory mechanism of BPC2 in roots remains unclear. In our previous study, we created Csbpc2 cucumber mutants by the CRISPR/Cas9 system, and our studies on the phenotype of Csbpc2 mutants showed that the root growth was inhibited compared with wide-type (WT). Moreover, the surface area, volume and number of roots decreased significantly, with root system architecture changing from dichotomous branching to herringbone branching. Compared with WT, the leaf growth of the Csbpc2 mutants was not affected. However, the palisade and spongy tissue were significantly thinner, which was not beneficial for photosynthesis. The metabolome of root exudates showed that compared with WT, amino acids and their derivatives were significantly decreased, and the enriched pathways were mainly regulated by amino acids and their derivatives, indicating that knockout of CsBPC2 mainly affected the amino acid content in root exudates. Importantly, transcriptome analysis showed that knockout of CsBPC2 mainly affected root gene expression. Knockout of CsBPC2 significantly reduced the gene expression of gibberellins synthesis. However, the expression of genes related to amino acid synthesis, nitrogen fixation and PSII-related photosynthesis increased significantly, which may be due to the effect of knocking out CsBPC2 on gibberellins synthesis, resulting in the inhibition of seedling growth, thus forming negative feedback regulation. Generally, we showed for the first time that BPC2 is a key regulator gene of root growth and development, laying the foundation for future mechanisms of BPC2 regulation in roots.


Assuntos
Giberelinas , Raízes de Plantas , Giberelinas/farmacologia , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Desenvolvimento Vegetal , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Hortic Res ; 10(5): uhad051, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37213679

RESUMO

BASIC PENTACYSTEINE (BPC) transcription factors are essential regulators of plant growth and development. However, BPC functions and the related molecular mechanisms during cucumber (Cucumis sativus L.) responses to abiotic stresses, especially salt stress, remain unknown. We previously determined that salt stress induces CsBPC expression in cucumber. In this study, Csbpc2 transgene-free cucumber plants were created using a CRISPR/Cas9-mediated editing system to explore CsBPC functions associated with the salt stress response. The Csbpc2 mutants had a hypersensitive phenotype, with increased leaf chlorosis, decreased biomass, and increased malondialdehyde and electrolytic leakage levels under salt stress conditions. Additionally, a mutated CsBPC2 resulted in decreased proline and soluble sugar contents and antioxidant enzyme activities, which led to the accumulation of hydrogen peroxide and superoxide radicals. Furthermore, the mutation to CsBPC2 inhibited salinity-induced PM-H+-ATPase and V-H+-ATPase activities, resulting in decreased Na+ efflux and increased K+ efflux. These findings suggest that CsBPC2 may mediate plant salt stress resistance through its effects on osmoregulation, reactive oxygen species scavenging, and ion homeostasis-related regulatory pathways. However, CsBPC2 also affected ABA signaling. The mutation to CsBPC2 adversely affected salt-induced ABA biosynthesis and the expression of ABA signaling-related genes. Our results indicate that CsBPC2 may enhance the cucumber response to salt stress. It may also function as an important regulator of ABA biosynthesis and signal transduction. These findings will enrich our understanding of the biological functions of BPCs, especially their roles in abiotic stress responses, thereby providing the theoretical basis for improving crop salt tolerance.

6.
Front Plant Sci ; 14: 1104036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895878

RESUMO

The 2, 4-epibrassinolide (EBR) significantly increased plants cold tolerance. However, mechanisms of EBR in regulating cold tolerance in phosphoproteome and proteome levels have not been reported. The mechanism of EBR regulating cold response in cucumber was studied by multiple omics analysis. In this study, phosphoproteome analysis showed that cucumber responded to cold stress through multi-site serine phosphorylation, while EBR further upregulated single-site phosphorylation for most of cold-responsive phosphoproteins. Association analysis of the proteome and phosphoproteome revealed that EBR reprogrammed proteins in response to cold stress by negatively regulating protein phosphorylation and protein content, and phosphorylation negatively regulated protein content in cucumber. Further functional enrichment analysis of proteome and phosphoproteome showed that cucumber mainly upregulated phosphoproteins related to spliceosome, nucleotide binding and photosynthetic pathways in response to cold stress. However, different from the EBR regulation in omics level, hypergeometric analysis showed that EBR further upregulated 16 cold-up-responsive phosphoproteins participated photosynthetic and nucleotide binding pathways in response to cold stress, suggested their important function in cold tolerance. Analysis of cold-responsive transcription factors (TFs) by correlation between proteome and phosphoproteome showed that cucumber regulated eight class TFs may through protein phosphorylation under cold stress. Further combined with cold-related transcriptome found that cucumber phosphorylated eight class TFs, and mainly through targeting major hormone signal genes by bZIP TFs in response to cold stress, while EBR further increased these bZIP TFs (CsABI5.2 and CsABI5.5) phosphorylation level. In conclusion, the EBR mediated schematic of molecule response mechanisms in cucumber under cold stress was proposed.

7.
Sci Total Environ ; 871: 162077, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764534

RESUMO

This work aims to resolve residual film pollution in farmlands and improve tomato quality. The mechanical properties and degradation of PBAT/PLA lignin (MZS) and PBAT/PLA humic acid (FZS) composite biodegradable film were analyzed, and its effect on soil temperature and humidity, soil microorganisms, soil physical and chemical properties, tomato yield, and quality was studied. Polyethylene film (PE) was used as a control. The results demonstrate a higher degradation degree of FZS film than of MZS film. The degradation degree of FZS and MZS films reached level 2 and level 1, respectively, after 131 days of film covering. The weight loss rate of FZS and MZS films reached 52.74 % and 57.82 %, respectively, when buried for 160 days. Compared to the coverings of PE and MZS films, FZS film could significantly increase the soil's electric conductivity and organic matter content (p < 0.05). The relative abundance of soil fungi Chaetomium also increased. The yield, soluble solids, vitamin C (Vc), soluble sugar, and lycopene of tomato plants covered with FZS film significantly increased by 6.74 %, 8.75 %, 15.41 %, 8.30 %, and 27.27 % compared to plants covered with PE film, and the total acid and hardness significantly decreased by 24.95 % and 8.46 %, respectively (p < 0.05). Using 10 µm PBAT/PLA humic acid biodegradable film for tomato cultivation in autumn and winter increased the lycopene and decreased the total acid content by changing the soil's physical and chemical characteristics and increasing the content of Chaetomium soil.


Assuntos
Substâncias Húmicas , Solanum lycopersicum , Licopeno , Solo , Poliésteres/química
8.
Antioxidants (Basel) ; 11(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35624833

RESUMO

Cold tolerance is improved by cold stress acclimation (CS-ACC), and the cold tolerance level is 'remembered' by plants. However, the underlying signaling mechanisms remain largely unknown. Here, the CS memory mechanism was studied by bioinformation, plant physiological and photosynthetic parameters, and gene expression. We found that CS-ACC induced the acquisition of CS memory and enhanced the maintenance of acquired cold tolerance (MACT) in cucumber seedlings. The H2O2 content and NADPH oxidase activity encoded by CsRBOH was maintained at higher levels during recovery after CS-ACC and inhibition of RBOH-dependent signaling after CS-ACC resulted in a decrease in the H2O2 content, NADPH oxidase activity, and MACT. CsRBOH2, 3, 4, and 5 showed high expression during recovery after CS-ACC. Many BZR-binding sites were identified in memory-responsive CsRBOHs promoters, and CsBZR1 and 3 showed high expression during recovery after CS-ACC. Inhibition of RBOH-dependent signaling or brassinosteroids affected the maintenance of the expression of these memory-responsive CsRBOHs and CsBZRs. The photosynthetic efficiency (PE) decreased but then increased with the prolonged recovery after CS-ACC, and was higher than the control at 48 h of recovery; however, inhibition of RBOH-dependent signaling resulted in a lower PE. Further etiolated seedlings experiments showed that a photosynthetic capacity was necessary for CS memory. Therefore, photosynthesis mediated by RBOH-dependent signaling is essential for CS memory.

9.
Sci Total Environ ; 829: 154527, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35307450

RESUMO

With the increase in plastic pollution of farmland substrate, biodegradable mulch film research has become a hotspot. However, the degradation rate of biodegradable plastic film over the entire crop growth period is still unclear, as well as its impact on crop growth and product quality. Here, several properties of two kinds of composite biodegradable mulch films, PBAT/PLA-[S1] and PBAT/lignin-[S2], are studied with polyethylene-[PE] and uncovered substrate (CK) as controls. We tested the differences in morphological characterization, physical properties, and weight loss rate of the plastic films, as well as the effects of the different plastic films on melon yield and quality, substrate temperature and humidity, physical and chemical properties of the substrate, and substrate fungal species composition. Compared to PE, biodegradable plastic films S1 and S2 increased substrate temperature and the net photosynthetic rate of leaves. The results of substrate 18 s rDNA assay of CK, PE, S1, and S2 after 80 days of treatment and pre-treatment showed that a total of 12 fungal phylum, with 317 fungal genera were found, in which Ascomycota as the main phyla and Penicillium as the main genera. Compared with PE, the S2 treatment significantly increased the single fruit weight, central sugar content and soluble sugar of melon by 225.35 g, 1.26%, and 0.68%, respectively (p < 0.05). When buried for 240 d, the weight loss rate of S2 was significantly increased by 86.08% compared with PE (p < 0.05). From these results, we extrapolated that covering the substrate with the most biodegradable film, PBAT/lignin composite (10 µm), improved the yield and fruit quality of the melon in winter greenhouse production.


Assuntos
Plásticos Biodegradáveis , Cucurbitaceae , Lignina , Açúcares , Redução de Peso
10.
Plants (Basel) ; 10(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34961219

RESUMO

Cold stress is a limiting factor to the growth and development of cucumber in the temperate regions; hence, improving the crop's tolerance to low temperature is highly pertinent. The regulation of low-temperature tolerance with exogenous ABA and CaCl2 was investigated in the cucumber variety Zhongnong 26. Under low-temperature conditions (day/night 12/12 h at 5 °C), seedlings were sprayed with a single application of ABA, CaCl2, or a combination of both. Our analysis included a calculated chilling injury index, malondialdehyde (MDA) content, relative electrical conductivity, antioxidant enzyme activities (SOD, CAT, and APX), leaf tissue structure, and expression of cold-related genes by transcriptome sequencing. Compared with the water control treatment, the combined ABA + CaCl2 treatment significantly improved the superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) of the seedlings by 34.47%, 59.66%, and 118.80%, respectively (p < 0.05), and significantly reduced the chilling injury index, relative electrical conductivity, and MDA content, by 89.47%, 62.17%, and 44.55%, respectively (p < 0.05). Transcriptome analysis showed that compared with the water control treatment, 3442 genes were differentially expressed for the combined treatment, 3921 for the ABA treatment, and 1333 for the CaCl2 treatment. KEGG enrichment analysis for both the ABA and combined ABA + CaCl2 treatments (as compared to the water control) showed that it mainly involves genes of the photosynthesis pathway and metabolic pathways. Differentially expressed genes following the CaCl2 treatment were mainly involved in plant hormone signal transduction, plant-pathogen interaction, MAPK signaling pathway-plant, phenylpropanoid biosynthesis, and circadian rhythm-plant. qRT-PCR analysis and RNA-seq results showed a consistent trend in variation of differential gene expression. Overall, this study demonstrated that although all three treatments provided some protection, the combined treatment of ABA (35 mg/L) with CaCl2 (500 mg/L) afforded the best results. A combined ABA + CaCl2 treatment can effectively alleviate cold-stress damage to cucumber seedlings by inducing physiological changes in photosynthesis and metabolism, and provides a theoretical basis and technical support for the application of exogenous ABA and CaCl2 for low-temperature protection of cucumber seedlings.

12.
Hortic Res ; 8(1): 146, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34193850

RESUMO

The use of heterografts is widely applied for the production of several important commercial crops, but the molecular mechanism of graft union formation remains poorly understood. Here, cucumber grafted onto pumpkin was used to study graft union development, and genome-wide tempo-spatial gene expression at the graft interface was comprehensively investigated. Histological analysis suggested that resumption of the rootstock growth occurred after both phloem and xylem reconnection, and the scion showed evident callus production compared with the rootstock 3 days after grafting. Consistently, transcriptome data revealed specific responses between the scion and rootstock in the expression of genes related to cambium development, the cell cycle, and sugar metabolism during both vascular reconnection and healing, indicating distinct mechanisms. Additionally, lower levels of sugars and significantly changed sugar enzyme activities at the graft junction were observed during vascular reconnection. Next, we found that the healing process of grafted etiolated seedlings was significantly delayed, and graft success, xylem reconnection, and the growth of grafted plants were enhanced by exogenous glucose. This demonstrates that graft union formation requires the correct sugar content. Furthermore, we also found that graft union formation was delayed with a lower energy charge by the target of rapamycin (TOR) inhibitor AZD-8055, and xylem reconnection and the growth of grafted plants were enhanced under AZD-8055 with exogenous glucose treatment. Taken together, our results reveal that sugars play a positive role in graft union formation by promoting the growth of cucumber/pumpkin and provide useful information for understanding graft union healing and the application of heterografting in the future.

13.
Plant Physiol Biochem ; 162: 706-715, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33799182

RESUMO

AINTEGUMENTA-like (AIL) proteins are members of the APETALA 2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain family of transcription factors involved in plant growth, development, and abiotic stress responses. However, the biological functions of AIL members in pumpkin (Cucurbita moschata Duch.) remain unknown. In this study, we identified 12 AIL genes in the pumpkin genome encoding proteins predicted to be localized in the nucleus. Phylogenetic analysis showed that the AIL gene family could be classified into six major subfamilies, with each member encoding two AP2/ERF domains separated by a linker region. CmoAIL genes were expressed at varying levels in the examined tissues, and CmoANT genes showed different expression patterns under auxin (IAA), 1-naphthylphthalamic acid (NPA), and abscisic acid (ABA) treatments. Ectopic overexpression of CmoANT1.2 in Arabidopsis increased organ size and promoted growth of grafted plants by accelerating graft union formation. However, there was no significant difference at the graft junction for WT/WT and WT/ANT under IAA or NPA treatments. Taken together, the results of this study provide critical information about CmoAIL genes and their encoded proteins, and suggest future work should investigate the functions of CmoANT1.2 in the grafting process in pumpkin.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cucurbita , Arabidopsis/genética , Arabidopsis/metabolismo , Cucurbita/genética , Cucurbita/metabolismo , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
BMC Plant Biol ; 21(1): 189, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33874888

RESUMO

BACKGROUND: Low temperature severely depresses the uptake, translocation from the root to the shoot, and metabolism of nitrate and ammonium in thermophilic plants such as cucumber (Cucumis sativus). Plant growth is inhibited accordingly. However, the availability of information on the effects of low temperature on nitrogen transport remains limited. RESULTS: Using non-invasive micro-test technology, the net nitrate (NO3-) and ammonium (NH4+) fluxes in the root hair zone and vascular bundles of the primary root, stem, petiole, midrib, lateral vein, and shoot tip of cucumber seedlings under normal temperature (NT; 26 °C) and low temperature (LT; 8 °C) treatment were analyzed. Under LT treatment, the net NO3- flux rate in the root hair zone and vascular bundles of cucumber seedlings decreased, whereas the net NH4+ flux rate in vascular bundles of the midrib, lateral vein, and shoot tip increased. Accordingly, the relative expression of CsNRT1.4a in the petiole and midrib was down-regulated, whereas the expression of CsAMT1.2a-1.2c in the midrib was up-regulated. The results of 15N isotope tracing showed that NO3--N and NH4+-N uptake of the seedlings under LT treatment decreased significantly compared with that under NT treatment, and the concentration and proportion of both NO3--N and NH4+-N distributed in the shoot decreased. Under LT treatment, the actual nitrate reductase activity (NRAact) in the root did not change significantly, whereas NRAact in the stem and petiole increased by 113.2 and 96.2%, respectively. CONCLUSIONS: The higher net NH4+ flux rate in leaves and young tissues may reflect the higher NRAact in the stem and petiole, which may result in a higher proportion of NO3- being reduced to NH4+ during the upward transportation of NO3-. The results contribute to an improved understanding of the mechanism of changes in nitrate transportation in plants in response to low-temperature stress.


Assuntos
Adaptação Fisiológica , Compostos de Amônio/metabolismo , Temperatura Baixa , Cucumis sativus/fisiologia , Nitratos/metabolismo , Plântula/fisiologia , Transporte Biológico , Oxirredução , Estresse Fisiológico
15.
Plant Cell Rep ; 39(10): 1301-1316, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32648011

RESUMO

KEY MESSAGE: CsGPA1 interacts with CsTIP1.1 (a member of CsAQPs) and suppression of CsGPA1 results the reverse expression of CsAQPs in leaves and roots, resulting in declining water content of cucumber seedlings under salt stress. Salt stress seriously affects cucumber growth and development. Whether the G-protein alpha subunit functions in cucumber during salt stress and its regulation mechanism remains unknown. We interrogated CsGPA1-RNAi lines to identify the role of CsGPA1 during salt stress. Phenotypically, compared with wild type, leaves were severely withered, and root cells showed signs of senescence under salt stress for RNAi lines. Compared with WT, SOD and CAT activity, soluble protein and proline contents all decreased in RNAi lines, while malondialdehyde and relative electrical conductivity increased. Through screening the yeast two-hybrid library and combined with yeast two-hybrid and GST pull-down, the interaction of CsGPA1 with CsTIP1.1 was found the first time in a plant. Then, the expression of aquaporin (AQP) family genes was detected. The expression of CsAQP genes in leaves and roots was primarily up-regulated in WT under salt stress. However, interference by CsGPA1 resulted in enhanced expression of CsAQPs except for CsTIP3.2 in leaves, but reduced expression of some CsAQPs in roots under salt stress. Furthermore, principal component analysis of CsAQP expression profiles and linear regression analysis between CsGPA1 and CsAQPs revealed that CsGPA1 reversely regulated the expression of CsAQPs in leaves and roots under salt stress. Moreover, the water content in leaves and roots of RNAi seedlings significantly decreased compared with WT under salt stress. Overall, CsGPA1 interacts with CsTIP1.1 and suppression of CsGPA1 results in opposite patterns of expression of CsAQPs in leaves and roots, resulting in declining water content of cucumber under salt stress.


Assuntos
Cucumis sativus/fisiologia , Proteínas de Plantas/metabolismo , Tolerância ao Sal/fisiologia , Plântula/fisiologia , Antioxidantes/metabolismo , Cucumis sativus/efeitos dos fármacos , Cucumis sativus/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Modelos Biológicos , Família Multigênica , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Análise de Componente Principal , Prolina/metabolismo , Ligação Proteica/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Estresse Salino/genética , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Plântula/efeitos dos fármacos , Plântula/genética , Cloreto de Sódio/farmacologia , Solubilidade , Água/metabolismo
16.
BMC Plant Biol ; 20(1): 162, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32293294

RESUMO

BACKGROUND: Fruit cracking occurs easily under unsuitable environmental conditions and is one of the main types of damage that occurs in fruit production. It is widely accepted that plants have developed defence mechanisms and regulatory networks that respond to abiotic stress, which involves perceiving, integrating and responding to stress signals by modulating the expression of related genes. Fruit cracking is also a physiological disease caused by abiotic stress. It has been reported that a single or several genes may regulate fruit cracking. However, almost none of these reports have involved cracking regulatory networks. RESULTS: Here, RNA expression in 0 h, 8 h and 30 h saturated irrigation-treated fruits from two contrasting tomato genotypes, 'LA1698' (cracking-resistant, CR) and 'LA2683' (cracking-susceptible, CS), was analysed by mRNA and lncRNA sequencing. The GO pathways of the differentially expressed mRNAs were mainly enriched in the 'hormone metabolic process', 'cell wall organization', 'oxidoreductase activity' and 'catalytic activity' categories. According to the gene expression analysis, significantly differentially expressed genes included Solyc02g080530.3 (Peroxide, POD), Solyc01g008710.3 (Mannan endo-1,4-beta-mannosidase, MAN), Solyc08g077910.3 (Expanded, EXP), Solyc09g075330.3 (Pectinesterase, PE), Solyc07g055990.3 (Xyloglucan endotransglucosylase-hydrolase 7, XTH7), Solyc12g011030.2 (Xyloglucan endotransglucosylase-hydrolase 9, XTH9), Solyc10g080210.2 (Polygalacturonase-2, PG2), Solyc08g081010.2 (Gamma-glutamylcysteine synthetase, gamma-GCS), Solyc09g008720.2 (Ethylene receptor, ER), Solyc11g042560.2 (Ethylene-responsive transcription factor 4, ERF4) etc. In addition, the lncRNAs (XLOC_16662 and XLOC_033910, etc) regulated the expression of their neighbouring genes, and genes related to tomato cracking were selected to construct a lncRNA-mRNA network influencing tomato cracking. CONCLUSIONS: This study provides insight into the responsive network for water-induced cracking in tomato fruit. Specifically, lncRNAs regulate the hormone-redox-cell wall network, including plant hormone (auxin, ethylene) and ROS (H2O2) signal transduction and many cell wall-related mRNAs (EXP, PG, XTH), as well as some lncRNAs (XLOC_16662 and XLOC_033910, etc.).


Assuntos
Frutas/fisiologia , Regulação da Expressão Gênica de Plantas , RNA Longo não Codificante/fisiologia , Solanum lycopersicum/fisiologia , Estresse Fisiológico/genética , Etilenos/metabolismo , Frutas/genética , Glicosiltransferases/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/genética , Oxirredução , RNA Longo não Codificante/genética , RNA Mensageiro/metabolismo
17.
BMC Plant Biol ; 19(1): 398, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31510927

RESUMO

BACKGROUND: High temperature is one of the major abiotic stresses in tomato and greatly reduces fruit yield and quality. Identifying high-temperature stress-responsive (HSR) genes and breeding heat-tolerant varieties is an effective way to address this issue. However, there are few reports on the fine mapping of heat-tolerance quantitative trait locus (QTL) and the identification of HSR genes in tomato. Here, we applied three heat tolerance-related physiological indexes, namely, relative electrical conductivity (REC), chlorophyll content (CC) and maximum photochemical quantum efficiency (Fv/Fm) of PSII (photosystem II), as well as the phenotypic index, the heat injury index (HII), and conventional QTL analysis combined with QTL-seq technology to comprehensively detect heat-tolerance QTLs in tomato seedlings. In addition, we integrated the QTL mapping results with RNA-seq to identify key HSR genes within the major QTLs. RESULTS: A total of five major QTLs were detected: qHII-1-1, qHII-1-2, qHII-1-3, qHII-2-1 and qCC-1-5 (qREC-1-3). qHII-1-1, qHII-1-2 and qHII-1-3 were located, respectively, in the intervals of 1.43, 1.17 and 1.19 Mb on chromosome 1, while the interval of qHII-2-1 was located in the intervals of 1.87 Mb on chromosome 2. The locations observed with conventional QTL mapping and QTL-seq were consistent. qCC-1-5 and qREC-1-3 for CC and REC, respectively, were located at the same position by conventional QTL mapping. Although qCC-1-5 was not detected in QTL-seq analysis, its phenotypic variation (16.48%) and positive additive effect (0.22) were the highest among all heat tolerance QTLs. To investigate the genes involved in heat tolerance within the major QTLs in tomato, RNA-seq analysis was performed, and four candidate genes (SlCathB2, SlGST, SlUBC5, and SlARG1) associated with heat tolerance were finally detected within the major QTLs by DEG analysis, qRT-PCR screening and biological function analysis. CONCLUSIONS: In conclusion, this study demonstrated that the combination of conventional QTL mapping, QTL-seq analysis and RNA-seq can rapidly identify candidate genes within major QTLs for a complex trait of interest to replace the fine-mapping process, thus greatly shortening the breeding process and improving breeding efficiency. The results have important applications for the fine mapping and identification of HSR genes and breeding for improved thermotolerance.


Assuntos
Genes de Plantas/fisiologia , Temperatura Alta , Locos de Características Quantitativas/fisiologia , Solanum lycopersicum/fisiologia , Termotolerância/genética , Mapeamento Cromossômico , Solanum lycopersicum/genética , Análise de Sequência de RNA , Estresse Fisiológico
18.
Plant Cell Environ ; 41(10): 2373-2389, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851102

RESUMO

Thermotolerance is improved by heat stress (HS) acclimation, and the thermotolerance level is "remembered" by plants. However, the underlying signalling mechanisms remain largely unknown. Here, we showed NADPH oxidase-mediated H2 O2 (NADPH-H2 O2 ), and chloroplast-H2 O2 promoted the sustained expression of HS-responsive genes and programmed cell death (PCD) genes, respectively, during recovery after HS acclimation. When spraying the NADPH oxidase inhibitor, diphenylene iodonium, after HS acclimation, the NADPH-H2 O2 level significantly decreased, resulting in a decrease in the expression of HS-responsive genes and the loss of maintenance of acquired thermotolerance (MAT). In contrast, compared with HS acclimation, NADPH-H2 O2 declined but chloroplast-H2 O2 further enhanced during recovery after HS over-acclimation, resulting in the reduced expression of HS-responsive genes and substantial production of PCD. Notably, the further inhibition of NADPH-H2 O2 after HS over-acclimation also inhibited chloroplast-H2 O2 , alleviating the severe PCD and surpassing the MAT of HS over-acclimation treatment. Due to the change in subcellular H2 O2 after HS acclimation, the tomato seedlings maintained a constant H2 O2 level during recovery, resulting in stable and lower total H2 O2 levels during a tester HS challenge conducted after recovery. We conclude that tomato seedlings increase their MAT by enhancing NADPH-H2 O2 content and controlling chloroplast-H2 O2 production during recovery, which enhances the expression of HS-responsive genes and balances PCD levels, respectively.


Assuntos
Cloroplastos/metabolismo , Peróxido de Hidrogênio/metabolismo , NADPH Oxidases/metabolismo , Solanum lycopersicum/metabolismo , Termotolerância , Aclimatação , Resposta ao Choque Térmico , Solanum lycopersicum/enzimologia , Solanum lycopersicum/fisiologia , Plântula/metabolismo , Plântula/fisiologia
19.
Sci Rep ; 6: 33777, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27653374

RESUMO

MicroRNAs (miRNAs) are 19-24 nucleotide (nt) noncoding RNAs that play important roles in abiotic stress responses in plants. High temperatures have been the subject of considerable attention due to their negative effects on plant growth and development. Heat-responsive miRNAs have been identified in some plants. However, there have been no reports on the global identification of miRNAs and their targets in tomato at high temperatures, especially at different elevated temperatures. Here, three small-RNA libraries and three degradome libraries were constructed from the leaves of the heat-tolerant tomato at normal, moderately and acutely elevated temperatures (26/18 °C, 33/33 °C and 40/40 °C, respectively). Following high-throughput sequencing, 662 conserved and 97 novel miRNAs were identified in total with 469 conserved and 91 novel miRNAs shared in the three small-RNA libraries. Of these miRNAs, 96 and 150 miRNAs were responsive to the moderately and acutely elevated temperature, respectively. Following degradome sequencing, 349 sequences were identified as targets of 138 conserved miRNAs, and 13 sequences were identified as targets of eight novel miRNAs. The expression levels of seven miRNAs and six target genes obtained by quantitative real-time PCR (qRT-PCR) were largely consistent with the sequencing results. This study enriches the number of heat-responsive miRNAs and lays a foundation for the elucidation of the miRNA-mediated regulatory mechanism in tomatoes at elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...